
Task Assignment and Motion Planning for Bi-Manual Mobile Manipulation

Shantanu Thakar, Ariyan Kabir, Prahar M. Bhatt, Rishi K. Malhan, Pradeep Rajendran,
Brual C. Shah, and Satyandra K. Gupta†

Abstract— We present a two-layered architecture for task-
agent assignment and motion planning of Bi-manual Mobile
manipulators for executing complex tasks. We use search trees
in temporal windows to determine feasible task assignments of
agents using task and spatial constraint-based heuristics. We
also introduce a caching scheme for moving between different
trees so as to avoid re-planning of those portions of the robot
motion that were successful. This greatly reduces the number
of calls to the motion planner as compared to direct motion
planning after task-agent assignment. We have shown our
approach works on a set of complex tasks with significantly
lower computation times.

I. INTRODUCTION

In our daily lives, we perform many tasks which require
us to use both our arms to manipulate a variety of objects.
Many such tasks cannot be completed without coordination
between the two arms. Moreover, some tasks also require
us to manipulate objects while walking. Bi-manual mobile
manipulators are becoming popular because they resemble
humans in dexterity and can perform a variety of tasks which
a single arm mobile manipulator may not be able to perform.
For example, carrying large objects, assembling furnitures,
opening and holding a CNC machine door while trying to
extract the part etc. These tasks can be broken into subtasks.
To successfully perform a task, the subtasks need to be
assigned to the appropriate (left or right) manipulator.

Each arm of a bi-manual mobile manipulator needs to
be assigned appropriately to carry out different subtasks.
Moreover, the mobile base may need to assist either or both
the arms in performing those tasks. A symbolic task-agent
assignment without taking into account the feasibility of the
motions of the agents may lead to failure in task execution.
Consider a bi-manual mobile manipulator robot performing
the task of attaching a board on the wall using a drill machine
as shown in Fig. 1. We observe that a wrong assignment
of the arms can result in infeasible (here in collision) final
configuration of the robots.

Most of the Task and Motion Planning (TAMP) algorithms
[1] can generate a task sequence for the agents involved and
their corresponding trajectories. These algorithms invoke the
motion planning routine for each task-agent assignment to
validate the assignment. This approach is computationally
viable when the query to the motion planning routine is
not computationally intensive. However, in the case of a
bi-manual mobile manipulator where for some tasks both
the manipulators and the base need to work collaboratively,
invoking motion planning for each agent assignment might

†University of Southern California, CA USA
[guptask]@usc.edu

Fig. 1: A Bi-manual Mobile Manipulator (BMM) has to attach a
part (blue board) to the wall using a drilling machine. The BMM
has the agents (Ml,Mr, B) (right arm, left arm, mobile base). If it
is assigned Mr for holding the part and Ml for drilling as shown
in (b), it will result in an infeasible and in-collision pose for doing
the task. Whereas the opposite assignment will result in a feasible
pose without collisions for the task.

be computationally expensive due to the high number of
Degrees of Freedom (DOF). If the wrong arm is assigned
for a task, the notification for this will come only after the
motion planner returns an infeasible trajectory. This poses a
challenge when we want to execute complex tasks using a
bi-manual mobile manipulator.

In this work, we have developed a search based algorithm
for determining the correct task-agent assignment for gener-
ating feasible motions for a bi-manual mobile manipulator.
We assume that the task network is given to us, which
is independent of the robot. We propose spatial constraint
based heuristics to prune branches of the search tree such
that the motion planner is not executed for the wrong
task-agent assignment. The developed algorithm selects the
correct DOF needed to execute the given task. Moreover, we
have a separate tree for motion planning once the task-agent
assignment is done. We have introduced a caching scheme
to move from motion planning to task-agent assignment if
the motion plan fails and assign a different set of agents only
for the part of the motion that failed. This helps in avoiding
repeated calls to expensive motion planners and significantly
reducing computation time.

II. RELATED WORK

Robots like Herb 2.0 [2], HoLLiE [3], Rollin Justin [4]
have been developed and studied for bi-manual mobile
manipulation. In [5] parallelized planning and execution of
tasks is implemented using Rollin Justin. Independent tasks
are planned using parallel path planners and dependent tasks
which need both the arms are planned using a single motion
planner. Significant work has been done in the combined task
and motion planning for such robotic systems. An interface
between the task planner and the motion planner is developed
in [6], which generates errors giving feedback to the task

planner in terms of logical predicates when motion plans
fail. Off-the-shelf task and motion planners are used along
with geometric information, making them efficient. Many
specialized search-based approaches for solving similar task
and motion planning problems have been implemented [7]–
[9]. However, in these methods, failing of the motion plan is
the only notification for an incorrect task assignment. In [10]
geometric backtracking is implemented for combined task
and motion planning. This enables the robot to backtrack
into the task planning domain if motions are not feasible.

Various heuristics have been suggested for combined task
and motion planning methods [11]–[13]. Heuristics guide the
search towards feasible motions thus reducing the number of
motion plan attempts. In our approach, We assume that a task
network is already given to us. We focus on the task-agent
assignment and motion generation for a bi-manual mobile
manipulator for the given task network such that motions
are feasible and the task objectives are achieved.

In systems like bi-manual mobile manipulators, the mo-
tions of the mobile base and each of the arms is coupled. Task
and agent assignment and scheduling for robotic systems
have been studied in detail in [14]. However, in these
methods, multiple robots with shared workspace do not move
at the same time. Geometric conditions of manipulators are
integrated with a symbolic description for task and manip-
ulator motion planning in [15]. This enables performing
manipulation tasks with several robots and objects. Com-
bined task and motion planning is studied for a bi-manual
humanoid setup in [16] focusing on perception and plan
execution. Mobile manipulator task and motion planning
have been implemented in [17]. Here, a hierarchical plan-
ner is presented where kinematic solutions are determined
for task-level problems to determine optimal solutions for
abstracted problems. Mobile base positioning is especially
important in bi-manual setups, where the two arms can
perform independent tasks if the mobile base is located at
the appropriate position [18].

Point-to-point(p2p) planning and constrained motion gen-
eration are both required for bi-manual mobile manipulators.
There have been several approaches for manipulator motion
planning like randomized algorithms [19]–[21], search based
algorithms [22], [23], and optimization based methods [24].
For constrained motion generation for high degree of free-
dom systems like bi-manual mobile manipulators, we use
sequential optimization described in [25], [26].

III. PROBLEM FORMULATION
Definitions Object: Let, Oi be an object. In this paper, we

will assume that Oi is a rigid body with a coordinate frame
attached to it. We assume that the state of Oi is defined as
its the pose (p = x, y, z, qx, qy, qz, qw or p = x, y, z, α, β, γ)
with respect to the world coordinate frame (W).

Bi-manual mobile manipulator: Let BMM refer to the bi-
manual mobile manipulator into consideration. Let Ml and
Mr refer the left and the right arms (serial-link manipulators)
respectively and let B represent the mobile base of the
robot. Here, each of the arms may or not have the same
number of DOF. Without loss of generality, we consider

Fig. 2: Task network for the example shown in Fig. 1.
two similar arms with n DOF (θ1, θ2 . . . θn). The mobile
base configuration is represented by (x, y, φ) for its location
and orientation. We assume each arm to be equipped with
the appropriate end-effector to execute the desired tasks. We
denote any of the arms or the base as an agent.

Task: Let Tk be a task. A task is defined by the state
transition of an object. Tk, is associated with the pre-
conditions (ppre) and post-condition (ppost) of the state of
one object. We assume that the associated object is available
at its pre-condition state before the task starts. We assume
that the type and number of agents required by the task are
specified. One or more agents will carry out the task based
on the requirement. The object will be transferred to the post-
condition state after the agent/s have completed the task. We
assume that the pre/post-conditions are given as sets of poses
(i.e., ppre ∈ Ppre, ppost ∈ Ppost, |Ppre| ≥ 1,|Ppost| ≥ 1).
During task execution, we assume that a fixed-joint formation
is required between an agent and an object whenever the
agent operates on the object.

Task Network Model: Let T be a task-network. There
are one or more connected tasks in T that completes an
operation. We assume that any two tasks (TA, TB) in T can
have one of the following four interdependencies-
(1) No interdependency
(2) Precedence: If TA has precedence over TB , then TB can-
not start until TA has been finished. Based on the availability,
same or different agent can be assigned for TA and TB
(3) Immediacy: If an immediacy connection comes from TA
to TB , then TB has to start immediately after TA. The state
of the object at the end of TA will be the state of the object
at the start of TB . Based on the object’s state transition
requirement, it may not be possible to assign different agents
for TA and TB .
(4) Concurrence: We define container task and
embedded task to explain concurrence. Let container task
be the task that will have a longer duration and
embedded task as the task that is overlapped by the
container task. Let, TA and TB two concurrent tasks.
Let, TA be the container task task and TB be the
embedded task. By definition, TB cannot start until TA
has started and TA cannot be finished until TB has finished.
Therefore, the same agent cannot be assigned for the
embedded task of a container task.

We consider each of the task given in T as a core task.
We assume that there can be supporting tasks required
to facilitate the core task. For a BMM we assume that the
supporting task will always be done by the mobile base B.
Example, if we assign Mr to pick up an object, B will assist
when the object is unreachable for Mr. There may be cases
where B has to assist both Mr and Ml to perform the task.

Let us consider the example shown in Fig. 1. The as-
sociated task-network for the BMM is illustrated in Fig.
2. There are four tasks in this task network. We want to
assign agents to carry out these tasks and generate trajectories
for the agents. As an example, we will summarize the at-
tributes/requirements of the tasks below. From our definitions
of precedence, immediacy, and concurrence, and the task
requirements, we can see that HOLDPART (HP) has to begin
immediately after PICKPART (PP). ATTACHPART (AP) can
not start until PICKTOOL (PT) has finished and HP has
started. HP cannot finish until AP is finished.

TABLE I: Task Description
Associated

Object
Required

agent type Pre-condition Post Condition

PickPart Part Manipulator ppre = ppartinitial
ppost ∈ P part

picked−up

PickTool Tool Manipulator ppre ∈ P tool
initial

ppost ∈ P tool
picked−up

HoldPart Part Manipulator ppre ∈ ppartpicked−up ppost = P part
on wall

AttachPart Tool Manipulator ppre ∈ P tool
picked−up ppost = ptoolon wall

Problem Statement For a given task network T , we
need to sequence the tasks to satisfy the constraints, assign
agents to the tasks, and generate their trajectories to carry
out the tasks using a BMM. The trajectories for the agents
must be generated s.t the pre and post-conditions of each
task in T are satisfied. Therefore, we need to generate
continuous trajectories for the agents such that there is a
smooth transition between the end of one task and start of
the next.

Formally, given a task network T and a BMM, our
objective is to assign tasks to the agents, sequence the tasks,
and generate continuous configuration space trajectories for
each agent such that there is no conflict in the assignment
and the task is executed successfully.

IV. APPROACH
In our approach to solving the task-agent assignment and

motion planning problems for a BMM, we consider a two-
layered architecture. Each layer is divided into temporal
windows. The division into temporal windows is based on
the task order and constraints. In the first layer which is
the task-agent assignment layer, we assign which task is to
be done by which arm(s) of the BMM. In the second layer
which is the motion planning layer, we execute the motion
planners for the task assignments from the first layer.

Task-Agent Assignment Layer: In this layer, we assign
appropriate agents for the tasks in each temporal window. We
create a search tree from the root node to the leaf node for
each temporal window. The root and leaf nodes are virtual
nodes. Here, a node means a task-agent assignment. For a
BMM, each task can be completed by one of the following
6 sets of agents: Ml, Mr, (Ml, B), (Ml, B), (Ml,Mr),
(Ml,Mr, B). If in a temporal window, there are n tasks,
the root node will have n × 6 successors, i.e for each
task, there are 6 possible agent combinations to execute the
task. For each of those n × 6 tasks, we have (n − 1) × 6
successors for the remaining tasks. The branching factor here
is large, however a large number of the nodes will have
task-agent assignments that will be infeasible due to the
task constraints or spatial constraints. We have developed
heuristics to identify such nodes and prune those branches
before we run motion planners for executing the tasks.

The order of the task-agent node expansion is based on the
fact that, the lesser the number of DOF required to complete
the task, the lesser will be the computation overhead for
motion planning. For example, if a BMM has to pick up an
object from a table and it is reachable for one of the arms, we
do not want to plan for all the DOF for the robot. Planning for
just that arm is sufficient. Hence, for any node the successor
task-agent assignments nodes are expanded in the order of
increasing DOF as follows: (Ml), (Mr), (Ml, B), (Ml, B),
(Ml,Mr), (Ml,Mr, B). For the sake of convenience, we fix
this order. This acts as a branch guiding heuristic.

1) Task Constraint Heuristics: The first task constraint
heuristic is based on the concurrency constraint between
tasks. For concurrent tasks, if Mi is being used for the em-
bedded task, we can prune the branch which has assignment
of Mi and (Mi, B) for the container task. The second task
constraint heuristic is based on the constraints from the task
network provided. If a task TA has been assigned to the arm
Mi, and there is a task TB such that there is the immediacy
condition from TA to TB , then task TB must be assigned to
Mi, (Mi, B) or (Mi,Mj , B). Here, tasks TA and TB can be
in different temporal windows.

2) Spatial Constraint Heuristic: This heuristic is based
on the reachability and existence of collision-free inverse
kinematics (IK) for the agents assigned to the task in a
node. Tasks in which the object needs only one arm to
manipulate and is reachable for arm without the motion of
the mobile base can be done using Ml or Mr or (Ml, B)
or (Mr, B), i.e either use the appropriate arm or an arm +
base together. For some tasks, it might not be possible to
complete the task with a single arm or two arms unless the
base is moved. For such tasks, we can only use (Ml, B) or
(Mr, B). For tasks which need both the arms and the object
is reachable for both, we can use (Ml,Mr) or (Ml,Mr, B).
And finally, for tasks which need both arms and for at least
one of them the object is not reachable, (Ml,Mr, B) must
be used. These combinations are determined by the spatial
constraint heuristic which checks for the reachability of arms
and existence of collision-free IK solutions for arm(s) + base
combinations. The check for reachability and existence of
feasible collision free IK for high DOF is computationally
efficient and helps us to reduces calls to the expensive motion
planning query for each task-agent assignment. The details
for spatial constraint heuristic are discussed later.

Motion Planning Layer: In this layer, we take in as input,
the branches from the root node of the first temporal window
to the leaf node of the last temporal window in the task-agent
assignment layer. Here, we adaptively select the motion plan-
ners and generate motion for the agents. Each node in each
of the search tree in this layer is composed of task-agents
assignments. If by sampling the key-frames (6 DOF poses)
of the associated object, we can determine the constraints on
the object. This, in turn, helps us determine whether a point-
to-point (p2p) or constrained motion generation is required
for the assigned agents to execute each task. In addition to
generating motion of the agents at each node, our method
generates motion for the transition between the end of a tree

Fig. 3: Algorithm 1
in one window and the beginning of a tree in the next. An
example of the two layers and temporal windows for the
problem in Fig. 2 is shown in Fig. 4.

Caching Scheme: The search trees are labeled as t(i,j)
with i being the temporal window index and j being the
layer index. There are 2 layers and say m temporal windows.
In a layer, if we find a branch from the root node to the leaf
node for t(i,j), we move on to the tree t(i,j+1) which is in
the next temporal window. In the first layer, if there is no
feasible branch from the root to the leaf for t(i,1), we go to
the tree t(i−1,1) of the previous temporal window and prune
the current expanded branch to continue the search to the
next branch. If we reach the leaf node of the tree t(m,1) of
the last temporal window in the first layer, we expand the
tree t(1,2) of the first temporal window of the second layer.

In the second layer, for trees in each temporal window,
we generate motions for the BMM. However, if the motion
planner fails to find a feasible motion in a tree t(i,2), we
directly move to the tree t(i,1) of the same temporal window
but in the first layer. Also, if the motion planner fails to find
a feasible transition between leaf node of t(i−1,2) and root
node of t(i,2), we move to the tree t(i,1). In the tree t(i,1),
we prune the current branch and explore other branches. If
we find a different feasible branch here, we move back to
the tree t(i,2) motion planning layer in the same temporal
window. If there is any inconsistency between the nodes of
tree t(i,1) (current temporal window) and the tree t(i+1,1)

(next temporal window) in the first layer due to different
agent assignment, we move to the tree t(i+1,1) instead and
resolve those inconsistencies by expanding the tree again.
This continues till the entire first layer has a consistent agent
assignment based on the task constraint heuristic. Then we
move back to the tree t(i,2) which had infeasible motion,
to begin with. This caching scheme helps in avoiding re-
exploration of the same nodes in trees due to the generation
of infeasible motions during motion planning.

Algorithms: We explain our algorithm using the example
in Fig. 2. In line 1 of Algo. 1, a container R stores all the
combination of agents possible for a BMM. The partially
expanded search trees for both the layers in the example
are shown in Fig. 4 . The function AssignTaskAgent in
Algo. 2 shows the pseudo-code of the search for task-agent
assignment. Since there are two tasks in the first temporal
window, the root node will have 12 successors. Each of these
12 nodes will have 6 successors for the other task. In Fig. 4,
we show the first correct task-agent assignment. We assume

Fig. 4: Example of completely expanded search trees at different
temporal windows of the three layers for the example in Fig. 2

that the initial location of the BMM is far away from the
part and the tool. Hence, in t(1,1), the nodes which do not
have the base B as an agent for the task will be pruned
using the spatial constrain heuristic (marked red). Here, the
node PP (Ml, B) is selected for expansion. Once this node
is expanded, a collision-free IK solution is generated for the
agents combination at the pre and pose conditions of the
object in the task and stored in the node.

The successor nodes for the PP (Ml, B) node are shown.
The nodes with the same agent like PT (Ml) or same pair
of agents PT (Ml, B) will be still valid in here even though
the same arm is being used for PP and PT . Those nodes
will get pruned due to task constraint heuristics in the next
temporal window due to the concurrency condition between
the hold part (HP) and the attach part (AP) tasks. The
nodes PT (Mr) may or may not be pruned using the spatial
constraint heuristic depending on the final configuration of
the BMM at the parent node. If the arms are not reachable in
PT (Ml/Mr) and we do not find a feasible IK configuration
for the nodes PT (Ml/Mr, B), we prune those branches
(using spatial constraint heuristic) and move on to node
PT (Mr,Ml, B). At this node, we find the IK for the whole
BMM, to satisfy the post conditions of the task PT . Once
we reach the leaf node of the tree in first temporal window,
we move on to the root node of the tree in second temporal
window. If the node PT (Mr,Ml, B) has no feasible IK,
we move to the PT (Mr, B), and continue the search in the
similar fashion. The function isPruned in line 8 of Algo. 2
executes these pruning rules. The SelectNextTree function in
line 26 of Algo. 2 is used to select the next tree to move on
to. It also encodes the caching scheme.

Spatial Constraint Checking: Nodes which assign a
single arm to do a task, like PT (Ml) in Fig. 4 are validated
using the capability map of the manipulator. A capability
map is used to perform collision-free reachability tests for a
manipulator [18]. It is a pre-computed voxel grid, where a
single query to each voxel returns if the centroid of the voxel
is reachable by the robot in position and within a range of
orientations. A single query on a pre-computed capability
map is significantly faster than solving IK numerically.

We use analytical IK-solver for non-redundant manipu-
lators and numerical IK-solver for redundant systems (i.e.,
mobile-base and arm/s combination) to test the collision-free

Fig. 5: Algorithm 2

reachability at key-frames. If a task has to be performed by
multiple manipulators, each attached to a different mobile-
base, then we solve the IK for one manipulator/s and mobile-
base combination at a time by keeping the configuration of
others constant. The CheckReachability function in line 13
of Algorithm 3 checks these spatial constraints. Finding col-
lision free numerical IK is computationally expensive as we
have to include collision costs in the numerical optimization
cost function [25]. Hence, we attempt to find the numerical
IK without collision and check for collisions later. This is
repeated a few times with different seeds for optimization.
If there is no feasible solution from this method, we attempt
numerical optimization with collision costs once. If this also
results in no feasible IK solution, we prune that node.

Motion Generation: We have used sampling-based plan-
ners for the point-to-point motion of high-DOF systems, such
as mobile base and arm combinations. We have used an
optimization-based method to generate constrained trajecto-
ries. We pose the constrained trajectory generation problem
as a discrete parameter optimization problem and solve it
using successive refinement [25]. We set the objective to
be minimizing the trajectory execution time and constraints
to be (1) maintaining the constraints imposed by the task,
(2) satisfying the kinematic and dynamic constraints of the
robot, and (3) avoiding collisions. These motion planning
methods are encoded in the PlanMotion function in line 21
of Algo. 2. This takes in the tree container T and the current
best solution and finds if the next solution is of a lesser
time cost. In this function, we make sure that the transition
between the leaf node and the roots nodes of two successive
trees in the motion planning layer is smooth. The tfail output
argument is to determine which tree of the motion planning
layer has infeasible motions. This is useful to execute the
caching scheme as explained in Sec. IV.

V. RESULTS

We have implemented our algorithm for task-agent as-
signment and motion planning for 3 challenging tasks. The

BMM we used has 17 DOF, 3 DOF for the mobile base
and 7 for each of the arms. The arms are the KUKA iiwa
7 manipulators and mobile base is holonomic. The tasks
executed by the BMM are described in Figs. 6, 7 and 8.
There were 8, 5 and 12 sub-tasks in the task networks for
the three tasks respectively.

To demonstrate the effectiveness of the spatial constraint
heuristics and the caching scheme used, we show the time
taken to find the first solution for our algorithm. Further, we
compare it with direct motion planning without the spatial
constraint heuristic and the caching scheme. The time taken
for all the three tasks for both the cases is shown in Tab. II.
We implemented our algorithm using MATLAB with an Intel
Xeon 3.50GHz processor and 32GB of RAM. We set the
total time limit for the algorithm to be 30 mins. For motion
planners, we set the time limit to be 30s, 60s, and 90s for
motions involving one, two, and three agents respectively.

Fig. 6: Task No. 1 : The BMM has to pick up a long part and attach
it to the wall using a drilling machine (blue). After it drills on the
right end, it has to move and drill in the center while holding the
part. It has to finally drill at the left end to complete the task.

Fig. 7: Task No. 2 : The BMM has to take a long rod (red) out of
a box (brown) and transfer it to a different location. It pulls out the
part using the right arm, then holds it using both arms pulling it out
completely. Thereafter, it transfers the part to a different location

TABLE II: Impact of having spatial constraint checking and caching
in task-agent assignment and motion planning on computation time

Task No.
With spatial constraint
checking and caching

(sec)

Without spatial
constraint checking and

caching (sec)
1 32.3 479.7
2 15.3 257.5
3 71.9 921.3

It can be observed from Tab. II that with spatial checking
and caching, on average the computation time for a solution
is about 86% lower than without spatial constraint checking
and caching. Where there is no spatial constraint checking,
the motion planner is called for every task-agent assignment

Fig. 8: Task No. 3 : The BMM has to pick up a box (green) and
place it on the table, open it and pick up a part (blue) and place it
outside. Then it has to pick up a small part (red) and assemble it
with the blue part using a hammer

branch resulting in high computation time. Most of the initial
branches are infeasible and that is known only after the
planner attempts planning. The details of the task networks
and the generated trajectories are available in the video at
the following link https://youtu.be/MnghUBqQ6qg

VI. CONCLUSIONS
We have presented a two layered architecture for task-

agent assignment and motion planning for a bi-manual
mobile manipulator with a given task network. We have
introduced spatial constraint checking heuristics for pruning
branches of search trees in a computationally efficient way.
This significantly reduces the computation time as the motion
planner is not called at every task-agent assignment, but
only those which are feasible in terms of reachability and
collision-free IK solutions. Moreover, we also present a
caching scheme in which we move between search trees
when motion planner fails to find a solution for a task, so
as to not plan again for the successful portion of the task.
These two techniques significantly reduce the computation
time. We have used point to point planners for the BMM
and constrained motion generation wherever necessary. In
the future we plan to expand this to a group of co-operating
bi-manual mobile manipulators for even more complex tasks.

Acknowledgment: This work is supported in part by
National Science Foundation Grant #1634431. Opinions
expressed are those of the authors and do not necessarily
reflect the views of the sponsor.

REFERENCES
[1] F. Lagriffoul, N. Dantam, C. Garrett, A. Akbari, S. Srivastava, and

L. Kavraki, “Platform-independent benchmarks for task and motion
planning,” IEEE Robotics and Automation Letters, vol. 3, pp. 3765–
3772, Oct. 2018.

[2] S. S. Srinivasa, D. Berenson, M. Cakmak, A. Collet, M. R. Dogar,
A. D. Dragan, R. A. Knepper, T. Niemueller, K. Strabala, M. V.
Weghe et al., “Herb 2.0: Lessons learned from developing a mobile
manipulator for the home,” Proceedings of the IEEE, vol. 100, no. 8,
pp. 2410–2428, 2012.

[3] A. Hermann, J. Sun, Z. Xue, S. W. Ruehl, J. Oberländer, A. Rönnau,
J. M. Zöllner, and R. Dillmann, “Hardware and software architecture
of the bimanual mobile manipulation robot hollie and its actuated up-
per body,” in 2013 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics. IEEE, 2013, pp. 286–292.

[4] C. Borst, T. Wimbock, F. Schmidt, M. Fuchs, B. Brunner, F. Zacharias,
P. R. Giordano, R. Konietschke, W. Sepp, S. Fuchs et al.,
“Rollin’justin-mobile platform with variable base,” in 2009 IEEE
International Conference on Robotics and Automation. IEEE, 2009,
pp. 1597–1598.

[5] F. Zacharias, D. Leidner, F. Schmidt, C. Borst, and G. Hirzinger,
“Exploiting structure in two-armed manipulation tasks for humanoid
robots,” in 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2010, pp. 5446–5452.

[6] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in IEEE international conference on
robotics and automation (ICRA), 2014, pp. 639–646.

[7] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical planning in the
now,” in Workshops at the Twenty-Fourth AAAI Conference on Artifi-
cial Intelligence, 2010.

[8] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “An
incremental constraint-based framework for task and motion planning,”
The International Journal of Robotics Research, vol. 37, no. 10, pp.
1134–1151, 2018.

[9] C. Reed Garrett, T. Lozano-Pérez, and L. Pack Kaelbling, “FFRob:
Leveraging symbolic planning for efficient task and motion planning,”
The International Journal of Robotics Research, vol. 37, no. 1, pp.
104–136.

[10] J. Bidot, L. Karlsson, F. Lagriffoul, and A. Saffiotti, “Geometric back-
tracking for combined task and motion planning in robotic systems,”
Artificial Intelligence, vol. 247, pp. 229–265, jun 2017.

[11] R. Chitnis, D. Hadfield-Menell, A. Gupta, S. Srivastava, E. Groshev,
C. Lin, and P. Abbeel, “Guided search for task and motion plans using
learned heuristics,” pp. 447–454.

[12] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Ffrob: An
efficient heuristic for task and motion planning,” in Algorithmic
Foundations of Robotics XI. Springer, 2015, pp. 179–195.

[13] A. Wells, N. Dantam, A. Shrivastava, and L. Kavraki, “Learning
feasibility for task and motion planning in tabletop environments,”
IEEE Robotics and Automation Letters, 2019.

[14] S. Alatartsev, S. Stellmacher, F. Ortmeier, S. Alatartsev, S. Stellmacher,
and ·. F. Ortmeier, “Robotic Task Sequencing Problem: A Survey,”
Journal of Intelligent Robotic Systems, vol. 80, pp. 279–298, 2015.

[15] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” The International Journal
of Robotics Research, vol. 28, no. 1, pp. 104–126, 2009.

[16] L. Karlsson, J. Bidot, F. Lagriffoul, A. Saffiotti, U. Hillenbrand,
and F. Schmidt, “Combining task and path planning for a humanoid
two-arm robotic system,” in Proceedings of tampra: Combining task
and motion planning for real-world applications (icaps workshop).
Citeseer, 2012, pp. 13–20.

[17] J. Wolfe, B. Marthi, and S. Russell, “Combined task and motion plan-
ning for mobile manipulation,” in Twentieth International Conference
on Automated Planning and Scheduling, 2010.

[18] R. K. Malhan, A. M. Kabir, B. C. Shah, and S. K. Gupta, “Identifying
feasible workpiece placement with respect to redundant manipulator
for complex manufacturing tasks,” in IEEE International Conference
on Robotics and Automation (ICRA), Montreal, Canada, May 2019.

[19] L. E. Kavraki, P. Svec, J.-P. Laumond, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
space,” IEEE Transactions on Robotics, 1996.

[20] S. M. Lavalle and J. J. Kuffner, “Randomized Kinodynamic Planning,”
The International Journal of Robotics Research, 2001.

[21] P. Rajendran, S. Thakar, and S. K. Gupta, “User-guided path planning
for redundant manipulators in highly constrained work environments,”
in IEEE International Conference on Automation Science and Engi-
neering (CASE), Vancouver, Canada, August 2019.

[22] B. J. Cohen, S. Chitta, and M. Likhachev, “Search-based planning for
manipulation with motion primitives,” in International Conference on
Robotics and Automation, 2010.

[23] S. Thakar, L. Fang, B. C. Shah, and S. K. Gupta, “Towards time-
optimal trajectory planning for pick-and-transport operation with a
mobile manipulator,” in IEEE International Conference on Automation
Science and Engineering (CASE), Munich, Germany, Aug 2018.

[24] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic Trajectory Optimization for Motion Planning,”
in International Conference on Robotics and Automation, 2011.

[25] A. Kabir, A. Kanyuck, R. K. Malhan, A. V. Shembekar, S. Thakar,
B. C. Shah, and S. K. Gupta, “Generation of synchronized configura-
tion space trajectories of multi-robot systems,” in IEEE International
Conference on Robotics and Automation (ICRA), Montreal, Canada,
May 2019.

[26] S. Thakar, P. Rajendran, V. Annem, A. Kabir, and S. K. Gupta,
“Accounting for part pose estimation uncertainties during trajectory
generation for part pick-up using mobile manipulators,” in IEEE In-
ternational Conference on Robotics and Automation (ICRA), Montreal,
Canada, May 2019.

https://youtu.be/MnghUBqQ6qg

	Introduction
	Related Work
	Problem Formulation
	Approach
	Results
	Conclusions
	References

