
Towards Time-Optimal Trajectory Planning for Pick-and-Transport
Operation with a Mobile Manipulator

Shantanu Thakar1, Liwei Fang1, Brual Shah1, and Satyandra Gupta1

Abstract— Warehouses and factories are beginning to deploy
mobile manipulators for transporting parts between machines
and work stations. Minimizing the number of these robots
on the shop floor requires that each robot should complete
the assigned task in a time-optimal manner and therefore
maximize the robot’s capacity. In this paper we present a
search-based algorithm for generating time-optimal trajectories
for picking and transporting parts using a mobile manipulator.
The approach is based on a hierarchical search that uses
discrete search for planning of the mobile base. The time cost
due to the motion of the manipulator for picking up the part
is evaluated and integrated with the search state space at the
appropriate times. The trajectories generated result in picking
up of the part with the manipulator while the mobile base is
in motion. The performance of the algorithm is studied for
different factory sizes and obstacle densities. This approach
enables the mobile manipulator to perform pick and transport
operation in a smaller time duration compared to the operation
where it stops to pick up the object.

I. INTRODUCTION
Many material handling and inspection tasks require ma-

nipulating parts and tools over large distances. Representative
examples include moving a part from one machine to another
machine in a job shop, moving an ultrasound sensor over a
large structure to perform inspection, or moving of products
in warehouses. Mobile manipulators that integrate a robotic
manipulator and a mobile robot in a single platform can
be useful in such tasks [1], [2]. Recent works have shown
usefulness of mobile manipulators in a variety of applications
[3]–[7].

Fig. 1: An example scene in a factory

A potential way to utilize mobile manipulators is to
decouple mobility and manipulation modes like in [8]. This

1S. Thakar, B. Shah, L. Fang and S. K Gupta are with Aerospace and Me-
chanical Engineering Department, University of Southern California, 90089
CA, USA sthakar, brualsha, liweifan, skgupta at
usc.edu

means that the mobile manipulator first uses mobility mode
to position itself at the task location. Then the manipulation
mode is used to carry out the pick-up task. This decoupling of
mobility and manipulation modes significantly simplifies the
planning problem. The motion planning for the mobile base
and the robot manipulator can then be solved independently,
by using their respective existing methods. However, this
approach has significant performance limitations as it does
not guarantee the shortest time operation for the combined
system. For example, for the scene in Fig. 1, the mobile
manipulator takes about 60 seconds to reach the goal position
from the current location without picking up the part. If the
mobile base stops and then picks up the part with maximum
joint rates of 15 degrees/second it adds a delay of about
14 seconds to the path, whereas picking up the part while
moving adds only about 2 seconds delay to the path (Fig. 9).

In most factory and warehouse scenarios like in Fig.
1, increasing the number of deliveries made by a single
mobile manipulator has significant performance benefits.
Independent planning of the mobile base and the manipu-
lator increases the execution time leading to reduction in
throughput. This may increase the necessity to have more
mobile manipulators resulting in congestion and further
degrading the throughput. Therefore, minimization of the
task execution time is a desired objective when performing
pick-and-transport tasks. This motivates for the use of the
mobility and the manipulation modes simultaneously (i.e
the manipulator picks the object while the mobile base is
moving).

Concurrent utilization of mobility and manipulation cre-
ates a need to solve a complex planning problem for the
mobile manipulator. In this paper, we present a pick-and-
transport operation that requires the mobile manipulator to
travel from an initial location, pick up a part with the
manipulator while the mobile base is still in motion, and
finally move towards a goal location. In other words, the
objective here is to find time-optimal trajectories for the
mobile manipulator system that picks a part with a known
pose and drops it off at a goal location.

We assume that the pose of the part that needs to be
transported is known. Instead of stopping the mobile base,
the manipulator picks up the part while the mobile base is
still moving. The uncertainty in the pose of the part will
make this process less robust as compared to grasping when
the mobile base is stationary. However, by carefully choosing
the grasping strategy (i.e., the way the part is to be picked
up) we can make the process robust while saving on the time.

In this paper, we focus on the motion planning of the



mobile base from an initial pose to a goal pose while passing
through an intermediary location. The grasping of the part
with the manipulator should happen around this intermediary
location. The main challenge here is that the intermediary
location which will give the fastest path is initially unknown.
Hence, it is not possible to define an intermediary goal point
for this location before the planning begins. However, we
know an area surrounding the part within which if the mobile
base is located, successful grasping of the part is possible.
Hence, it is necessary to bias the search towards this area,
grasp the part with the manipulator while the mobile base
is still in the area and subsequently move towards the goal
location. In most cases, shortest mobile base paths lead to
fastest mobile base trajectories. However, if the manipulator
joint rates are limited, then the mobile base may have to
slow down to ensure that the manipulator has sufficient time
to pick up the part. Hence, longer paths with no slow down
may result in faster mobile base trajectories. On the other
hand, there may be cases where stopping the mobile base to
pick up the part is necessary in a time-optimal trajectory. The
main contribution of this work is an algorithm that generates
such time-optimal trajectories for the mobile manipulator that
result in successful grasping of the part.

II. RELATED WORK

Sampling-based motion planning techniques like RRT,
PRM and their variants, [9]–[13] are very useful in wide
variety of motion planning problems with high dimensional
configuration spaces. They are computationally fast. How-
ever, they have limitations when it comes to the problem
discussed in this paper because of optimality requirement.
Moreover, there is an intermediary location at which the
part is to be picked up which is not known at the start,
hence biasing the sampling towards this intermediary target
is challenging.

Lattice-based planners [14]–[18] used with graph search
algorithms are promising for motion planning of a mobile
manipulators. These approaches compute the globally opti-
mal paths but take significant computational time. Hence,
using these approaches requires use of search space reduc-
tion method. Using these approaches independently for the
mobile base and the manipulator for finding optimal paths
for each, may not result in the global optimal path. Hence, it
is necessary to plan coordinated base-manipulator motions,
which respect the joint limits, avoidance of self-collisions as
well as collisions with obstacles in the environment.

Primitive-based approaches [19]–[21] are used for motion
planning of redundant manipulators. Here, the adaptive prim-
itives are executed in the search-based on the distance from
the target configuration. There may be viable paths of the
mobile base where neither of the primitives of the manipu-
lator is able to grasp the part. Hence, designing primitives
for the application mentioned here becomes critical.

Optimization based algorithms like STOMP [22], CHOMP
[23] can be used to generate smooth trajectories for high
dimensional systems. CHOMP iteratively improves an ini-
tial seed trajectory by using functional gradient techniques.

STOMP generates multiple candidate trajectories by sam-
pling around an initial seed and iteratively improving them
through stochastic optimization with an estimated gradient.

Multi-modal and hierarchical planners like in [24]–[26]
can be used for high-dimensional systems like mobile ma-
nipulators where the motions for the mobile base and ma-
nipulator have very different properties. These algorithms are
very effective in generating a feasible solution in complex
systems, however the solution generated may not be optimal.

III. PROBLEM FORMULATION

The planner needs to compute a time-optimal, collision-
free trajectory for the mobile manipulator. It should be
feasible with respect to joint rates of the manipulator and
the forward velocity and steering rate of the mobile base, be-
tween the start and the goal states of the Mobile Manipulator.
The grasping strategy given initially should be executed for
picking up a part with a known pose. More formally, given:

(i.) The continuous state space χ = χη × χΘ consisting
states x = [ηT ,ΘT ], where η = [x, y, φ]T ∈ χη ⊂
R2 × S1 is the pose of the mobile base and Θ =
[θ1, θ2, θ3, θ4, θ5, θ6]T ∈ χΘ ⊂ S6 is the configuration
of the 6 degrees of freedom (DoF) robotic manipulator
fixed on the mobile base.

(ii.) The start state is xM,S and the goal state is xM,G of
the mobile manipulator.

(iii.) Θ lies within the range [Θmin,Θmax] which for the
considered manipulator (UR5) is (−π, π].

(iv.) The continuous, state-dependent control action space
U(xM ) ⊂ R × S1 of the mobile base with each
control action primitive mc = [V, ψd]

T consists of a
forward speed V , and a heading ψd. All control action
primitives take a constant time Tp. V is constant for the
entire planning process. Forward speed constraint V <
Vmax. The continuous, state dependent action space
for the manipulator is Θ̇ = [θ̇1, θ̇2, θ̇3, θ̇4, θ̇5, θ̇6]T . The
joint rate constraint Θ̇ ≤ Θ̇max

(v.) W : The world frame of reference; P : Part frame;
G : Gripper frame; R : Mobile base frame; M :
Manipulator base frame; B : Table frame; iTj : Frame
j with respect to frame i.

(vi.)
W
T̃P is the estimated pose of the part in the world

frame. PTG is the gripper pre-grasping(insert) pose
for a part pose P for a particular grasping strategy
Gs(
W
T̃P).

(vii.) The geometric region Os =
⋃K
k=1 os,k ⊂ R2, occupied

by static known obstacles which may hinder the motion
of the mobile base as well as the manipulator. OT ∈
Os is the table as an obstacle. A representative scenario
is shown in Fig. 1.
Compute:
A time-optimal, collision free trajectory τ : [0, T ]→ χ,
satisfying velocity and joint rate constraints, such that
τ(0) = xM,S , τ(T ) = xM,G and T is minimized,
and the grasping strategy Gs(WTP) is executed at
time Tg , where Tg ∈ [0, T ]. Each state xM (t) along
τ belongs to the free space χfree = χ \ χobs =



{xM (t)|M(ηM (t),ΘM (t)) ∩ Os = ∅} for t ∈ [0, T ],
where M(ηM (t),ΘM (t)) ⊆ R3 is the region in 3D
space occupied by the mobile manipulator.

IV. GRASPING STRATEGY AND GRASPING AREA
For a part, there can be different ways in which it can be

picked up with a two fingered gripper. Each of these ways is
called a grasping strategy. Fig. 2 shows a part and the three
grasping strategies associated with it. It can be observed that
all the three grasping strategies are robust to uncertainty in
the pose of the part as they have a large overlap with a
wide two fingered gripper. Hence, we consider only these
grasping strategies. A grasping strategy consists of insertion,
grasping, and post-grasping (or retract) poses of the end
effector for any particular part pose, given by WTG(t). The
grasping strategy to be used is given before the planning
begins. Although grasping strategies shown in Fig. 2(b) and
Fig. 2(c) seem to be mirroring each other, they depend on the
placement of the part with respect to the table and may differ
significantly in terms of collisions and inverse kinematics
(IK). For a part, these grasping strategies can be generated
by performing grasp planning [27], [28].

For a given pose of the part, the grasping strategy decides
the pose of the gripper called the grasp-pose with which it is
supposed to approach the part. For a given grasping strategy
WTG(t), the pose of the part WTP , and the table orientation
WTB, we can compute a region consisting of valid mobile
base poses from which the entire grasping strategy is ex-
ecutable with respect to IK, and without collision between
the table and mobile manipulator. We call this region the
Grasping-Area Ag(φ) ⊂ AG. Where, Ag(φ) is the grasping
area dependent on the orientation of the mobile base φ (i.e.,
yaw). AG is the grasping area for the entire range of φ i.e.,
(−π, π]. For each grasping strategy and the location of the
part along with its table, there is a grasping area AG,a, where
AG,a is denotes the grasping area for the entire range of φ
for the grasping strategy a. It can be observed from Fig. 3,
that the grasping area is dependent on the pose of the part,
the table, and the orientation of the base.

The grasping area for a corresponding grasping strategy is
computed by sampling collision free points for the pose of
the mobile base. Further, checking if a valid and collision free
inverse kinematic solution is available for the manipulator.
This generates exhaustive grasping area for each orientation
φ of the mobile base.

V. PLANNING ALGORITHM
The planning of the mobile base is based on the lattice-

based planning for dynamically feasible trajectories [15]. The
lattice-based representation results in the discretization of
the configuration space into a set of states and connections
between these states.

A. Graph Representation
Let G = (S,E) represent the lattice-based graph, where

S is the set of all discrete states, and E represents the transi-
tions between any two states. Each state is the discretized 3
DoF state of the mobile base represented as a tuple (x, y, φ).
And, each edge E is the from the set of predefined feasible

Fig. 2: A part and the three associated grasping strategies

Fig. 3: An illustration for the grasping areas Ag(φ)

paths or motion primitives from one such state to another.
For each state, there is a set of n motion primitives to chose
from to move to the successive state. The mobile base is a
differentially drive robot and the primitives considered for its
motion are constant time primitives, i.e the time to go from
a state to any of its successor states is constant (T ). The
turning time and the forward motion time will be different
for each primitive such that the total primitive time is T . The
following are the rules for marking colors to nodes during
graph construction as shown in Fig. 4. They are formalized
in algorithm 3 in lines 13 to 23.

• The start node and the consecutive nodes are marked red
if they are not in the Grasping Area Ag(φ), where(φ)
is the mobile base orientation at the particular node).

• Once a node is expanded in Ag(φ), it will be marked
as yellow. All children of a yellow node are blue.

• All children of a blue or a green node are marked green.

B. Cost Function
Since the objective is to minimize the time taken to go

from the initial configuration to the target configuration, the
cost function is in units of time. The cost function is F (S) =
G(S) + H(S), where G(S) is the cost-to-come to node S
from the start node and H(S) is the cost-to-go from node
S to the goal. As mentioned in the Sec. V-A, the time taken
to traverse between any two neighboring states is a constant
T . The G cost of any state S′ whose parent is S is G(S′) =



Fig. 4: Color scheme in the search

G(S) + T . The H cost is explained in Sec. V-C.

C. Heuristic
We are interested in constructing a computationally effi-

cient and admissible heuristic. In this case, the mobile base
must reach the Grasping-area AG before moving towards
the goal point. Initially, the heuristic should guide the search
towards the grasping area. Once, the search reaches the
grasping area, the heuristic should then guide it towards the
final goal point. Fig. 5 explains the two different heuristics.

The red nodes are the ones where the search hasn’t reached
the grasping area. Hence for them we use the heuristics H1

as described in Fig. 5a. For nodes which are in the grasping
area (i.e yellow) or have an ancestor in the grasping area
(i.e blue or green nodes), the search uses heuristic H2 as
described in Fig. 5b. The algorithm 1 describes how these
heuristics are generated. The Fast-Marching method (FMM)
[29] is used and generates an array with shortest distance
values for each discrete point in the workspace to the point
about which it is calculated. It must be noted that this is
a pre-computation operation and takes about 3-5 seconds in
MATLAB to compute for a given scene, part and table poses.
Here using AG, the union of all grasping areas makes sure
that the heuristic is admissible.

(a) (b)
Fig. 5: Description of the heuristic before (a) and after (b) the search
reaches the grasping area AG

D. The Algorithm
The algorithm 3 describes the search procedure for the

motion planning of the mobile base. The differences from
the traditional A∗ search are the color scheme and a delayed
evaluation of the path when particular types of nodes are
expanded. Every successive node of the current node being

Algorithm 1 COMPUTE HEURISTIC(T,AG,Os)
Require: T (Goal),AG

Consider all n points (P1, P2 . . . Pn) on the boundary of AG

1: for Each Pi do
2: Compute FMMPi

given Os

3: end for
4: Compute FMMT for the Goal given Os

5: for every (X,Y) location in the workspace do
6: H1(X,Y ) = min(FMMPi

(X,Y ) + FMMT (XPi
, YPi

))/V
7: end for
8: H2(X,Y ) = FMMT (X,Y )/V
9: return H = [H1, H2]

Algorithm 2 HEURISTIC(S, T,H)

Require: T (Goal)
1: X , Y , φ = S.state
2: if S.color is RED then
3: return H1(X,Y )
4: else
5: return H2(X,Y )
6: end if

expanded has a prescribed color based on the rules mentioned
in algorithm 3. A typical search tree is as shown in Fig.
4. Any prospective path consists of red nodes, followed
by one yellow node and one blue node, and then green
nodes. If the current node being expanded is a blue node,
the grasping delay function is called (see Sec. V-E). This
function computes the delay if any caused due the grasping
of the part with the given grasping strategy. Further, this
delay is added to the g-cost of the blue node.

The algorithm terminates when a green node is chosen
from the open list as the current node and it satisfies goal
tolerance. This makes sure that the path passes through the
grasping area, and has an evaluation of the delay caused due
to grasping.

E. Manipulator Planning and Grasping Delay
For the planning of the manipulator, we have used a simple

inverse kinematics solver to provide a collision free motion
from the home position (Θs) to the insert pose. For picking
up of the part, another inverse kinematics based solver is
used which determines if the mobile base needs to reduce its
velocity for grasping the part, given the maximum joint rates
of the manipulator. The grasping delay function returns this
delay.

The grasping delay function is called when any blue
node is expanded. The parent of a blue node is a yellow
node which lies inside the grasping area denoted by Ag(φ)
(orientation of the mobile base at the yellow node is φ) as
shown in Fig. 6. The orientation associated with the blue
node is ψ. The mobile base arrives at the yellow node with
orientation φ, rotates by an angle ψ− φ at the yellow node,
and then moves towards the blue node with an orientation
ψ.

The grasping strategy as described in Sec. IV is imple-
mented over the segment from points 1 to 2. Point 2 is at
the edge of Ag(ψ) along the line segment from the yellow
node to the blue node. When the mobile base is at point 1
(yellow node) with orientation φ, the manipulator is in the
insert pose. And at point 2 it is in the post-grasping (retract)



Algorithm 3 Search algorithm for mobile base motion

Require: Sstart, T (Goal),Θs,Θg , WTP , AG, Os

H = COMPUTE HEURISTIC(T,AG,Os)
1: g(Sstart) = 0; Sstart.color is RED; OPEN = ∅; CLOSED = ∅
2: insert Sstart into OPEN with
F (Sstart)← G(Sstart) +HEURISTIC(Sstart, T,H)

3: while OPEN 6= ∅ do
4: pop S with the smallest F value from OPEN
5: if S.color = GREEN and S within goal tolerance then
6: return PATH
7: end if
8: if S.color is BLUE then
9: G(S)← G(S) + grasping delay(S, S.parent,WTP ,AG)

10: end if
11: for each successor S′ of S do
12: G(S′)← G(S) + T
13: if S.color is RED and S′ /∈ AG then
14: S′.color ← S.color = RED
15: else if S.color is RED and S′ ∈ AG then
16: S′.color ← Y ELLOW
17: else if S.color is Y ELLOW then
18: S′.color ← BLUE
19: else if S.color is BLUE then
20: S′.color ← GREEN
21: else
22: S′.color ← GREEN
23: end if
24: F (S′)← G(S′) +HEURISTIC(S′, T,H)
25: if a node with the same state and color as S′ ∈ OPEN and has

lower F value than S′ then
26: continue
27: else if a node with the same state and color as S′ ∈ CLOSED

and has lower F value than S′ then
28: continue
29: else
30: insert S′ into OPEN
31: end if
32: end for
33: add S to CLOSED
34: end while

pose. Point 2 is the last point on the edge from yellow to
blue nodes, where the post-grasping pose is feasible.

The line segment from 1 to 2 is divided into m points.
As the mobile base moves from 1 to 2, the manipulator
goes from the insert pose to the grasping pose and then to
the post-grasping pose. These motions are determined by
interpolating between the IK of the manipulator over the m
points. It may be possible that an intermediate IK (at one of
the m points) of the manipulator may not be achievable if the
maximum joint rate(s) is low and/or the velocity(translational
and rotational) of the mobile base is high. In such a case,
reduction of the velocity of the mobile base is the only
solution for the intermediate configuration to be achievable.
This results in a delay in the original trajectory of the mobile
base. Such delays along the m intermediate points are added
to give the total delay due to slowing down of the mobile
base. It should be noted that having the post-grasping pose
at the point 2 makes sure that the delay due to the limited
joint rates of the manipulator is minimized. Also, since in the
grasping strategies discussed before there are no large joint
angle differences, we assume that the configurations of the
manipulator when interpolating between the IKs are valid.

There may be cases where point 1 lies at the edge of the
grasping area Ag(φ) and point 2 coincides with it. In such
cases, the grasping of the part will happen when the mobile
base is rotating instead of translating. The same principles

are used to calculate the delay in motion in such cases as
well. After the post-grasping pose is reached, the planning
to the Θg is done again using the inverse kinematic solver.
As mentioned before, the total time delay associated with a
blue node is added to its g-cost.

Fig. 6: Segment of the path where grasping happens

VI. RESULTS AND DISCUSSION
We ran the planner with 11 motion primitives for the

mobile base, with each primitive of a constant time T of
1 second. The maximum turning velocity of the mobile
base was taken to be 1 rad/sec and the maximum forward
velocity to be 1 m/s. The maximum joint rates of the for the
manipulator (UR5) was taken to be 15 degrees/second. Ex-
periments were carried out on varying scene layouts ranging
from 10 m × 10 m to 50 m × 50 m. The discretization
of 20 cm is considered in each case. Several simulation
scenarios are generated by varying the percentage free space
(i.e., obstacle density) in the scene. The computation time,
the number of expansions, and the path cost are recorded
for each of the scenarios. To decrease the percentage free
area, obstacles are progressively added to an initially random
scene. As the size of the scene increases, the obstacle size
is also proportionally increased for the same scene. The
results presented in Fig. 7 are obtained for 75 trials. The
pre-computation of heuristics is included in the computation
time of the search. The grasping strategy a (from Fig. 2)
is used in each case with the corresponding grasping area.
This area is marked in magenta in Fig. 8. For the following
experiments, planning was performed off-board on a single
core of a standard desktop CPU (Intel Xeon, 3.5 GHz) in
MATLAB. The maximum computation time is about 110
seconds. This can be reduced considerably by having a multi-
core implementation and parallelization in C++.

For each scene size, it can be observed that the compu-
tation time, and the number of expansions are similar in
values from high to low percentage free area. However, the
computation time is lower for lower percentage of free area.
The reason for this is that the heuristic as obtained from
the algorithm 1, guides the search through narrow corridors
effectively as a result of FMM. This results in lesser node
expansions due to lesser control actions feasible at each pose
and hence less computation time. It can also be observed that
the number of expansions and the computation time increases
for a value of percentage free area as the scene size increases.



Fig. 7: Computation time, number of expansions and Path cost vs the percentage of free space in different layout dimensions

Fig. 8: Two paths for the given scene with one obstacle placed
differently and 70% free area

Fig. 8 shows paths for the composite search from a
starting location to the goal location via the grasping area
for a different placement of a single obstacle. It can be
observed that the path changes and passes through the
grasping area on the other side. Please see the trajectories
generated for the illustrative example in the video at https:
//youtu.be/B4SumiabVus We have used the robot simulator
V-REP for our simulations. For the trajectory in Fig. 8(a),
the grasping of the part happens when the mobile base is
rotating. Whereas for Fig. 8(b), it happens when the mobile
base is translating. Fig. 9 shows the time delay added to
the path in Fig. 8(b) as the maximum joint rates of the
manipulator increases. This also includes the gripper opening
and closing times. For very high joint rates the delay drops
to zero. The time delays if the same path is taken and
the grasping happens when the mobile base has completely

Fig. 9: The time delay for the path in Fig. 8(b) vs the maximum
joint rate for the manipulator

stopped at the node inside the grasping area is shown in blue.
Even for very high joint rates, there is a considerable time
delay in that case.

VII. CONCLUSIONS

We have developed a planner which generates time-
optimal trajectories for the selected action discretization
level. The resulting trajectory results in simultaneous motion
of the mobile base and the manipulator. It takes into account
the joint constraints for the manipulator. This results in
grasping of the part more naturally and without stopping
the mobile base motion, giving time-optimal trajectories with
respect to the resolution of the search space.

The focus of this paper has been the planning of the mobile
base while using the manipulator motion as constraints.

https://youtu.be/B4SumiabVus
https://youtu.be/B4SumiabVus


The joint limits of the manipulator result in added costs
of the path of the mobile base. The manipulator planner
presented in this paper for moving into the grasping pose
and implementing grasping is simplistic and purely based
on inverse kinematics. Furthermore, there may be a time
delay due to the motion of the manipulator from the initial
pose to the grasping pose at the grasping node, if the scene
near the part is cluttered. Also, it may happen that the joint
configurations of the manipulator for some grasp strategies
for a part may not be valid when interpolating between
IK solutions. Hence, in the future we plan to develop a
more sophisticated planner for the manipulator. In order
to plan for increased speeds of the mobile base and the
manipulator, we must integrate the dynamics of the system
into the planner. We can further improve trajectories by doing
optimization over continuous action space. This will also
result in smoother mobile base paths. Also, currently we are
grasping the part with an initially given grasping strategy. It
may happen that for a different grasping strategy the overall
time for the path is lesser. Hence, in the future we plan to
implement co-optimization for the grasping strategy into the
planner.

The grasping strategies we have considered inherently
reduce the effect of uncertainty in the part pose. However,
there may be parts for which no grasping strategy reduces
the uncertainty. We plan to analyze this uncertainty for the
robustness of grasping.

VIII. ACKNOWLEDGEMENTS

This work is supported in part by National Science Foun-
dation Grants #1634431 and The Provost Fellowship from
the University of Southern California. Opinions expressed
are those of the authors and do not necessarily reflect
opinions of the sponsors.

REFERENCES

[1] O. Khatib, “Mobile manipulation: The robotic assistant,” Robotics and
Autonomous Systems, vol. 26, no. 2-3, pp. 175–183, 1999.

[2] M. T. Mason, D. K. Pai, D. Rus, L. R. Taylor, and M. A. Erdmann, “A
mobile manipulator,” in IEEE International Conference on Robotics
and Automation (ICRA), vol. 3. IEEE, 1999, pp. 2322–2327.

[3] J. Alonso-Mora, R. Knepper, R. Siegwart, and D. Rus, “Local motion
planning for collaborative multi-robot manipulation of deformable ob-
jects,” in IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2015, pp. 5495–5502.

[4] R. A. Knepper, T. Layton, J. Romanishin, and D. Rus, “Ikeabot: An
autonomous multi-robot coordinated furniture assembly system,” in
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2013, pp. 855–862.

[5] S. Chitta, B. Cohen, and M. Likhachev, “Planning for autonomous
door opening with a mobile manipulator,” in IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2010, pp.
1799–1806.

[6] J. Scholz, S. Chitta, B. Marthi, and M. Likhachev, “Cart pushing with
a mobile manipulation system: Towards navigation with moveable ob-
jects,” in IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2011, pp. 6115–6120.

[7] A. Pratkanis, A. E. Leeper, and K. Salisbury, “Replacing the office
intern: An autonomous coffee run with a mobile manipulator,” in IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2013, pp. 1248–1253.

[8] R. Holmberg and O. Khatib, “Development and control of a holo-
nomic mobile robot for mobile manipulation tasks,” The International
Journal of Robotics Research, vol. 19, no. 11, pp. 1066–1074, 2000.

[9] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional con-
figuration spaces,” IEEE Transactions on Robotics and Automation
(ICRA), vol. 12, no. 4, pp. 566–580, 1996.

[10] B. Akgun and M. Stilman, “Sampling heuristics for optimal motion
planning in high dimensions,” in International Conference on Intelli-
gent Robots and Systems, 2011, pp. 2640–2645.

[11] S. M. Lavalle, “Planning Algorithms,” Journal of Chemical Informa-
tion and Modeling, vol. 53, no. 9, pp. 1689–1699, 2013.

[12] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in IEEE International Conference on
Robotics and Automation (ICRA), vol. 2. IEEE, 2000, pp. 995–1001.

[13] F. Burget, M. Bennewitz, and W. Burgard, “Bi 2 rrt*: An efficient
sampling-based path planning framework for task-constrained mobile
manipulation,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2016, pp. 3714–3721.

[14] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained
mobile robot motion planning in state lattices,” Journal of Field
Robotics, vol. 26, no. 3, pp. 308–333, 2009.

[15] M. Likhachev and D. Ferguson, “Planning long dynamically feasible
maneuvers for autonomous vehicles,” The International Journal of
Robotics Research, vol. 28, no. 8, pp. 933–945, 2009.

[16] P. Švec, B. C. Shah, I. R. Bertaska, J. Alvarez, A. J. Sinisterra,
K. v. Ellenrieder, M. Dhanak, and S. K. Gupta, “Dynamics-aware
target following for an autonomous surface vehicle operating under
COLREGs in civilian traffic,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS’13), 2013.

[17] B. C. Shah, P. Švec, I. R. Bertaska, A. J. Sinisterra, W. Klinger,
K. von Ellenrieder, M. Dhanak, and S. K. Gupta, “Resolution-
adaptive risk-aware trajectory planning for surface vehicles operating
in congested civilian traffic,” Autonomous Robots, vol. 40, no. 7, pp.
1139–1163, Oct 2016. [Online]. Available: https://doi.org/10.1007/
s10514-015-9529-x

[18] A. M. Kabir, B. C. Shah, and S. K. Gupta, “Trajectory planning for
manipulators operating in confined workspaces,” in IEEE International
Conference on Automation Science and Engineering (CASE), Munich,
Germany, Aug 2018.

[19] A. Menon, B. Cohen, and M. Likhachev, “Motion planning for smooth
pickup of moving objects,” in IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2014, pp. 453–460.

[20] B. J. Cohen, G. Subramania, S. Chitta, and M. Likhachev, “Planning
for manipulation with adaptive motion primitives,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2011,
pp. 5478–5485.

[21] K. Gochev, V. Narayanan, B. Cohen, A. Safonova, and M. Likhachev,
“Motion planning for robotic manipulators with independent wrist
joints,” in IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2014, pp. 461–468.

[22] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2011, p. 4569.

[23] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “Chomp: Covariant
hamiltonian optimization for motion planning,” The International
Journal of Robotics Research, vol. 32, no. 9-10, pp. 1164–1193, 2013.

[24] V. Pilania and K. Gupta, “A hierarchical and adaptive mobile manipu-
lator planner with base pose uncertainty,” Autonomous Robots, vol. 39,
no. 1, pp. 65–85, 2015.

[25] K. Hauser and J.-C. Latombe, “Multi-modal motion planning in non-
expansive spaces,” The International Journal of Robotics Research,
vol. 29, no. 7, pp. 897–915, 2010.

[26] K. Hauser and V. Ng-Thow-Hing, “Randomized multi-modal motion
planning for a humanoid robot manipulation task,” The International
Journal of Robotics Research, vol. 30, no. 6, pp. 678–698, 2011.

[27] J. L. Jones and T. Lozano-Perez, “Planning two-fingered grasps
for pick-and-place operations on polyhedra,” in IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 1990, pp.
683–688.

[28] N. B. Kumbla, S. Thakar, K. N. Kaipa, J. Marvel, and S. K. Gupta,
“Handling perception uncertainty in simulation-based singulation plan-
ning for robotic bin picking,” Journal of Computing and Information
Science in Engineering, vol. 18, no. 2, p. 021004, 2018.

[29] J. A. Sethian, “Fast marching methods,” SIAM review, vol. 41, no. 2,
pp. 199–235, 1999.

https://doi.org/10.1007/s10514-015-9529-x
https://doi.org/10.1007/s10514-015-9529-x

	Introduction
	Related Work
	Problem Formulation
	Grasping Strategy and Grasping Area
	Planning Algorithm
	Graph Representation
	Cost Function
	Heuristic
	The Algorithm
	Manipulator Planning and Grasping Delay

	Results and Discussion
	Conclusions
	Acknowledgements
	References

